If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+36=180
We move all terms to the left:
4x^2+36-(180)=0
We add all the numbers together, and all the variables
4x^2-144=0
a = 4; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·4·(-144)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*4}=\frac{-48}{8} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*4}=\frac{48}{8} =6 $
| 30+(-x)=27 | | -2/5x-4=18 | | X=16x^2+24x+9-6x^2-11x+3 | | X=(3x-1)(2x-3) | | X=(3x-1)(2x-3) | | 2x-12x+13=0 | | X=(4x+3)(4x+3) | | 0.25y=0.25-y | | 0.25y=0.25-y | | 0.25y=0.25-y | | 9x-129=4x+12 | | 2^x+64×2^-x-20=0 | | 2x+25°,+,2x-5°,+x=180° | | 2x+25°,+,2x-5°,+x=180° | | 2x+25°,+,2x-5°,+x=180° | | 2x+25°,+,2x-5°,+x=180° | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | -11x+29=-13x+31 | | 2x+25°,+,2x-5°,+x=180° | | -55x=30 | | -33=9-6y | | w/3+1=-6 | | 5^(x+2)+5^(x+1)=3750 | | -23=3e-(9-) | | (x^2-2x)(6-3x)=0 | | 4y-3=4(y+1) | | -4z+80=85-9z |